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Abstract, We consider the dynamics of a simple dne-dimensional model and we discuss 
the phenomenon of ageing (i.e. the strong dependence of the dynamical correlation 
functions over the waiting time). Our model is the so-called random random walk. the toy 
model of a directed polymer evolving in a random medium. 

Ageing is a very interesting phenomenon that has been observed in spin glasses [l-41, 
but is likely to be present in many other materials (for example rubber), and to be a 
crucial signature of the behaviour of a strongly disordered system. Inbrief we can say 
we have ageing if the response of the system to a perturbation strongly depends on the 
time t, (waiting time) during which the system has been kept in the low-temperature 
phase before starting the measurement. 

More precisely in an ageing experiment one brings the system to the low 
temperature phase at time to=O. One leaves the system quiescent up to the time t,, 
and at t, add a small perturbation [small enough that the linear response theory can be 
applied). One eventually measures the response function R(t,t,) at time I + & .  
Alternatively one can measure the correlation function C(t,  t,) between two quanti- 
ties measured at time t, and at time f+ t , .  

In the region where the observation time it is very much smaller than the waiting 
time, t < q ,  R and C are independent of t, and they are related by the fluctuation- 
dissipation theorem. Ageing is present if R and Care strongly dependent on f, in the 
region where ris of the order oft,. The phenomenon of ageing has been observed not 
only in real spin glasses, but also in numerical simulations of short-range [5] and long- 
range [6] spin glasses. In this last case the mean field approach [7,8] is exact, so that 
an analytic study of ageing should be possible. 

It seems natural that in the region of large times a simple scaling behaviour should 
hold. Different suggestions have been put forward. One simple possibility 191 is that in 
the region where both f and t ,  are large 

where the exponentp may be equal to zero. Unfortunately, at the moment we do not 
have complete justification of this formula. 
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We can sketch a simple qualitative explanation. We suppose that the system is 
described by a potential with a corrugated landscape, where many barriers of all 
possible heights are present. Such a system (considered in the thermodynamic limit) is 
always out of equilibrium. Its dynamics are given by the never-ending search of the 
absolute minimum by crossing potential barriers that can be arbitrarily large. 

Let us assume that the available phase space does not increase too much with the 
height of the barriers that have been crossed. In this case we can suppose that at time 
t, and temperature Tthe system has explored all the phase space that can be reached 
from the origin by crossing barriers that are smaller than Tln(t,). The system 
therefore will remain near the bottom of the explored phase space up to the moment 
at which it crosses one other large bamer. This can happen only at times of the order 
oft,. If we assume that the shape of the deepest minimum found does not depend on 
the size of the explored region we are led to (1). In this way we 'can explain the 
dependence on tlf,. One would need a more careful analysis to derive the value ofp, 
which may depend on the detailed quantity whose correlation function is computed. It 
should be noted that if 

lim lim C(t,f,)=const#O (2) 
t-" Lw-' 

(i.e. if C goes to a non-zero finite limit in the region where both f and t ,  are large and 
f < < f w )  thenp=O. 

The aim of this note is to discuss the behaviour of a very simple system, the one- 
dimensional random walk in a random environment [U]. In this simple case many 
analytic results are available (for a review see [lo]). Our numerical simulations will 
show that the ageing phenomenon is present also in such a simple setting. 

The model we consider is a particle whose equilibrium probability distribution is 
given by 

where Vis a random Gaussian quantity with zero average and correlations 
(3) 

(4) 

p ( x )  Ke-B(v(x)+r*? 

(V(x) - V(y))Z= 1.-y I". 
In the case a= 1 (the one that we will mainly consider in the following) the force 

F(x) - dV/dx is uncorrelated from point to point. One introduces the contribution 
,k2 to regularize the static equilibrium distribution, and 2. +O in the relevant limit. At 
equilibirium this model coincides with the toy model that was introduced in the study 
of the behaviour of interfaces ifrandom media (see [12] and references therein). 

It is known that [13] 
-2 - 1 - 4 3  

~~ 

(.d 
(2) - (x)Z-n-' ~ 

W~')-(dz)-W). (5 )  
The first equation implies that for non-zero 2. the particle is contained inside a 

region of radius of order In the 1-0 limit the particle is always at infinity at 
equilibrium (the potential Vis unbound). 

In most cases the particle is localized around the minimum. The most probable 
value of (x') - (x)'is of order one, although rare events, in which the potential has two 
widely separated nearly degenerate minima, do contribute strongly to the average of 
(xz)- ( x ) ~ ,  making it of order A-'. ~ 
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The dynamics of this model is a random walk biased to produce the equilibrium 
distribution (3) at large times. More precisely the model can be defined by introducing 
a one-dimensional lattice. If the particle is at point x at time f (x and t taking integer 
values) thenp, is the probability that at time E +  1 the particle is at site x +  1, and 1 -pA  
the probability that it is at site x-1. px  is a random variable with zero average 
(typically uniformly distributed in (0, l), not including the interval limits). 

It is easy to see that the equilibrium potential corresponding to this dynamics 
satisfy the condition 

V(x  + 1) - V ( x )  = -In - 
(1 -’x+), 

Consequently at large distance the difference of the potentials V(x)  - V k )  is approxi- 
mately Gaussian, with a= 1. 

This dynamics has been widely investigated [lo]. It can be proven [14] that for the 
particle to go from x toy it has to cross (with high probability) a barrier that is of order 
I ~ - y l ’ ’ ~ .  If the system is in x = O  at r = O ,  at a large time t i t  will be in x-In(t)?. 

In the foilowing we will discuss the phenomenon of ageing in this model. The 
simplest quantity one could study is the correlation function 

C(t , t , )=(x( t+t , ) -x( t , ) ) ’  0 
that for large f (in the asymptotic region studied by Sinai, where t>>tw) behaves as 
In@)‘. But this is not a good choice. In the region of large times, for t<<t,, this function 
behaves as l n ( ~ ) ~ .  The reasons for this behaviour are quite clear. If we assume that the 
probability distribution for the dynamics at time tmay be mimicked by the probability 
distribution for the statics, whereA is chosen so that the value of (x) coincides with the 
correct one, we find from the previous equations that (x’) - (x)’ is of order In 
other words the system has explored a region of size ln(t)’ and the probability of 
having two nearly equal minima inside this region vanishes as l/ln(t) as follows from 
the analysis of [13]. 

The previous analysis implies that the ageing properties of the function Care not 
simple and the scaling law in (1) cannot hold withp=O. So we found convenient to 
consider the following correlation. 

L(t, t , ) - l n ( ( x ( t + r , ) - x ( t ) ’ )  (8) 
or equivalently M(t,t,)-exp(L(t,f,)). M is not far from the most likely value of 
(x(t+tw) -x ( tJ ) * .  In this case we expect that in the region of large times, when t<<t,: 

M ( t ,  t,)=constant+O(In(t)-’). (9) 
All that said, it seemed natural to set up a numerical simulation to verify the validity 
of the scaling law: 

~ ( t , r , ) = f  - +O(ln(r)-’). 

We have generated 15 x 103 realizations of the one-dimensional random potential. 
For each of these realizations of the random potential we have observed the random 
walker travelling for ZK steps and we have measured the correlation M ( t ,  r,) at times t 
and t, equal to 2k, with k =  1. . . . , K -  1. The spatial lattice had an infinite extent, i.e. 
the particle would never hit a boundary. We have taken K =  21, i.e. performed order 
of 2 x IO6 sweeps per sample. 
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We show in figure 1, (In(lx(t)l) versus In(ln(t+l)) for different waiting time tw, 
scaled logarithmically. In figure 1 we have drawn continuous lines joining the points of 
equal t,. Higher curves correspond to lower t,. The first continuous line from the top 
joins points taken after no waiting (tw=O), the second line is for I,= 1, the third for 
t,=2, the fourth for t,=4, and so on, with an exponential progression. 

The upper lines of figure 1 have t>>&, and in the right part of the plot they scale 
with good precision as expected. Such straight Lines have a slope very close to 2. 

In figure 2 we plot the same points, but we join points of constant tit, ratio. Here 
the t/t, scaling is quite clear. Indeed the lines at intermediate values of tit, tend for 
large t to a constant value. The distance reached from the walker at time t depends 
only on the ratio tlt, If we double the observation time t but we also double the 
waiting time t, the average distance covered by the walker does not change. Figures 1 
and 2, and the other figures we will show, allow us to draw the main conclusion of this 
note. 

For large t and t,, t of order t,, the correlation functions behave as a 
universal function of tit,. 

The simplicity of the 1-dimensional (toy) model allows us to obtain very compelling 
numerical evidence for such an effect. 

In figure 3 we plot again the same data, but this time we select results with both t 
and t, larger than 32, and we plot exp((ln(lx(t)l))) versus In((t+ l)l(tw+ 1)). The data 
fall with good precision on a single scaling curve. In the left part of the x-axis (small t 
compared with t,) the universal curve is a constant (aside from small corrections), 
while in the large t/t, region it behaves as In(t/t,)’ (according to the Sinai [14] scaling 
law). 

Similar results can be obtained considering energy-energy correlation defined by 

w, b)- (v (x ( t ) )  - V(X(tW))Y (11) 
where Vis  defined by equation (6). 

reason we also expect that the expectation value of V: 
We expect that C,(t, tJ-ln(tit,)z, independent of the value of a. For the same 

~~ 

E ( 0  = (V(x(0)  (12) 
behaves as - In(t) for large t, independent of a. 

Such a scaling law is very well satisfied. Figures 4-6 are analogous to figures 1-3, 
and show the analogous scaling laws (which in this case are even better). In figure 4 we 
give - V( t )  as a function of In(t), and we join points of equal t,. The large t linear 
behaviour is very clear. In figure 5 we join points of equal tlt, ratio. Again, the curves 
tend to constant values. In figure 6 we show the rescaling of the points with t>32, 
t,>32, which again show very good accuracy. Here it is very clear, for example, that 
in the K t ,  asymptotic region the walker does not gain any energy. 

The numerical results we have presented here bring good evidence for the 
correctness of the simple ageing scaling relation 

for the correlation function of the logarithm of the distance and of the energy. 
In our model simple ageing is correct. This conclusion seems to us interesting 

because of its potential general implications, and because the simplicity ofthe model 
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0~ 1 2 
1og(iog(t+ 1)) 

Pigurel. The average logarithm of the distance reached by the walker aRer 1 sleps as a 
function of In(ln(!)). Here the lines join points with constant t,. Lines from top to bottom 
are from lower to higher tW. 

0 . I  2 

Figure2 Same points as figure 1, but here the lines join points of constani dt,. 

lag(lag(t+l)) 
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Figure 3. A selection of the paints from Kpures 1 and 2, far large [ and lw, versus In(t/L). 

5 i o  
iog(tt1) 

Figured. As in figure 1 (lines join points with constant L), but for - V ( f )  Venus In(f). 



Letter to the Editor 

t " " " " " " '  
L1155 

-10 0 i o  
loe((t+l)/(t+l)) 

Figure& As in figure 3. but for - V(t) .  
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is such that a more sound analytic (and maybe rigorous) derivation of these results 
does not seem impossible. 

As a further development of this work, we notice that it could bc interesting to 
study finite volume effects for large, but finite lattice size (i.e. with reflecting or 
periodic boundary conditions) and to study the modification of our results for very 
large time. The extension of the model to higher-dimensional cases, where the 
structure of minima is more complex, will probably be instructive. 
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